# **Technical Data Sheet**

# Chemical resistance of Grilon, Grilamid, Grilamid TR, Grivory GV and Grivory HTV

Plastics play a key role, both in industry and in everyday life. It is, however, extremely important that a specific plastic, unaffected by the environment surrounding it, is chosen for each application.

Generally speaking, polyamides are very resistant to all types of chemicals. Apart from concentrated acids, very few reagents attack polyamides.

The following table showing the chemical resistance of Grilamid, Grilamid TR, Grivory GV and Grilon offers guidance on the choice of polyamides for particular end uses.



The following table gives an indication of the chemical resistance of Grilon (polyamide 6 and 66), Grilamid (polyamide 12), Grilamid TR (transparent polyamide 12), Grivory GV (partially aromatic polyamide) and Grivory HTV (Polyphthalan 1). The chemical resistance was established by exposing test samples 1 mm thick, to each of the chemicals for a period of 12 months at room temperature. The results are valid both for unreinforced and for glass fibre reinforced products.

## Key:

- Resistant. Negligible, reversible or no changes in mass and dimensions. Example: Grilon unaffected by aqueous and alcoholic media.
- Limited resistance. Considerable dimensional changes, and possibly irreversible changes in properties after prolonged contact. Consultation advisable before use.
- Not resistant. May be used under certain conditions (brief contact).
- Soluble or attacked after brief contact.

Certain additives, particularly plasticizers, may be dissolved out into the medium. Absorption of the medium is generally sufficient, however, to compensate for any resultant loss in flexibility.

The data regarding chemical resistance refers to stress-free products. Stresses in parts of Grilamid TR can lead to cracking when coming into contact with specific solvents. Particular information can be found in the section «Environmental Stress Cracking».

## **Environmental Stress Cracking of Grilamid TR**

Amorphous thermoplastics such as Grilamid TR can develop stress cracking when exposed to certain media. Components are more likely to develop stress cracking symptoms when they are subjected to external stresses, or when, through unsuitable processing, they have high internal stresses.

Grilamid TR 55, Grilamid TR 70 LX and Grilamid TR 90 are not resistant to the following chemicals and stress cracking may occur: Benzyl alcohol, butanol, butylene glycol, ethanol, isopropanol, methanol, phenyl ethyl alcohol, propanol.

Grilamid TR 55 and Grilamid TR 70 LZ have limited (short term) chemical resistance to the following chemicals but stress cracking may occur under conditions of high internal or external stress: Acetone, amyl acetate, benzaldehyde, butyl acetate, cyclohexanone, diethyl ether, etheric oils, ethyl acetate, isopropanol 80%, methyl ethyl ketone, phenyl ethyl alcohol, pyridine, tetrahydrofuran.

Grilamid TR 90 has limited (short term) resistance to the following chemicals, but stress cracking may occur in: amyl acetate, benzaldehyde, butyl acetate, cyclohexanone, etheric oils, phenyl ethyl alcohol, pyridine.

The chemical resistance is dependent both on the temperature and the stress condition of the finished component. The suitability of any material for a specific application must be confirmed by a practical test.

| Medium            | Chemical formula                         | Concentration       | Resistar          |          |                   |                           |                           |
|-------------------|------------------------------------------|---------------------|-------------------|----------|-------------------|---------------------------|---------------------------|
|                   |                                          |                     | Grilon            | Grilamid | Grilamia IK       | Grivory GV                | Grivory HTV               |
| Acetaldehyde      | CH <sub>3</sub> -CHO                     | 40 % ag. soln.      | ••                | •••      | ••                | ••                        | ••                        |
| Acetamide         | $CH_3-CO-NH_2$                           | 50 % aq. soln.      | •••               | •••      | •••               | $\bullet \bullet \bullet$ | •••                       |
| Acetic acid       | CH <sub>3</sub> COOH                     | 10 % aq. soln.      |                   | ••       | $\bullet \bullet$ | •                         | ••                        |
| Acetic acid       | CH <sub>3</sub> COOH                     | 40 % aq. soln.      | $\circ$           | •        | •                 | 0                         | •                         |
| Acetic acid       | CH <sub>3</sub> COOH                     | technically pure    | $\circ$           | •        | 0                 | 0                         | •                         |
| Acetic anhydride  | CH <sub>3</sub> -CO-O-OC-CH <sub>3</sub> | technically pure    | $\circ$           | ••       | •                 | •                         | 0                         |
| Acetone           | CH <sub>3</sub> -CO-CH <sub>3</sub>      | technically pure    | •••               | •••      | •                 | ••                        | $\bullet \bullet \bullet$ |
| Allyl alcohol     | H <sub>2</sub> C=CH-CH <sub>2</sub> -OH  | technically pure    | $\bullet$         | •        | 0                 | ••                        | ••                        |
| Aluminium salts   | _                                        | *, aq. soln.        | •••               | •••      | •••               | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Alums             | $K_2SO_4 - Al_2(SO_4)_3 \cdot 12 H_2O$   | *, aq. soln.        | $\bullet$         | •••      | •••               | ••                        | $\bullet \bullet \bullet$ |
| Ammonia           | NH <sub>3</sub>                          | 10 % ag. soln.      | •••               | •••      | •••               | •••                       | $\bullet \bullet \bullet$ |
| Ammonia           | NH <sub>3</sub>                          | *, gaseous          | •••               | •••      | •••               | •••                       | $\bullet \bullet \bullet$ |
| Ammonium chloride | NH <sub>4</sub> Cl                       | 10 % aq. soln.      | •••               | •••      | •••               | •••                       | •••                       |
| Ammonium salts    |                                          | *, technically pure | $\bullet \bullet$ | •••      | ••                | ••                        | •••                       |
| Amyl acetate      | $CH_3(CH_2)_4$ $-OOCCH_3$                | technically pure    | •••               | ••       | •••               | •••                       | •••                       |
| Amyl alcohol      | $CH_3(CH_2)_3 - CH_2 - OH$               | technically pure    | •••               | •••      | 0                 | •••                       | •••                       |
| Aniline           | $C_6H_5-NH_2$                            | technically pure    | ••                | ••       | 0                 | ••                        | ••                        |

<sup>\*</sup> signifies data valid for all concentrations

| Medium                    | Chemical formula                                                                   | Concentration          | Grilon                    | Grilamid                  |                           | esistance ilamid TR Grivory GV Grive |                           |  |
|---------------------------|------------------------------------------------------------------------------------|------------------------|---------------------------|---------------------------|---------------------------|--------------------------------------|---------------------------|--|
| Anisole                   | C <sub>6</sub> H <sub>5</sub> -O-CH <sub>3</sub>                                   | technically pure       | •••                       | •••                       | •••                       | •••                                  | •••                       |  |
| Aqua regia                | HNO <sub>3</sub> + HCI                                                             | technically pure       | $\circ$                   | $\circ$                   | $\circ$                   | $\circ$                              | $\circ$                   |  |
| Aspirin                   | _                                                                                  | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Attar of roses (Rose oil) | _                                                                                  | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | •                         | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Barium salts              | _                                                                                  | *, aq. soln.           | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Battery acid              | $H_2SO4$                                                                           | 36 % aq. soln.         | •                         | $\bullet$                 | $\bullet$                 | •                                    |                           |  |
| Beer                      | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Benzaldehyde              | C <sub>6</sub> H <sub>5</sub> CHO                                                  | technically pure       | •                         | $\bullet$                 |                           | •                                    |                           |  |
| Benzoic acid              | $C_6H_5$ —COOH                                                                     | *, aq. soln.           | $\bullet$                 | $\bullet$                 | $\bullet$                 | $\bullet$                            | $\bullet$                 |  |
| Benzene                   | $C_6H_6$                                                                           | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Benzyl alcohol            | $C_6H_5-CH_2OH$                                                                    | technically pure       | •                         | •                         | •                         | •                                    |                           |  |
| Bitumen                   | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Borax                     | $Na_2B_4O_7$                                                                       | *, aq. soln.           | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Boric acid                | $H_3BO_3$                                                                          | 10 % aq. soln.         | $\bullet$                 | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet$                            | $\bullet$                 |  |
| Brake fluid (DOT 4)       | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Brandy                    | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Bromine                   | Br <sub>2</sub>                                                                    | *                      | •                         | •                         | 0                         | •                                    |                           |  |
| Butane                    | $C_4H_{10}$                                                                        | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Butanol                   | $C_4H_9OH$                                                                         | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | 0                         | $\bullet$                            | $\bullet \bullet \bullet$ |  |
| Butter                    | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Butter milk               | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Butyl acetate             | CH <sub>3</sub> COOCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Butyric acid              | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> —COOH                              | technically pure       | $\bullet$                 | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet$                            | $\bullet$                 |  |
| Butylene glycol           | HO-CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -OH             | technically pure       | $\bullet$                 | $\bullet \bullet \bullet$ | 0                         | $\bullet$                            | $\bullet$                 |  |
| Calcium chloride          | CaCl <sub>2</sub>                                                                  | 10 % aq. soln.         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Calcium chloride          | CaCl <sub>2</sub>                                                                  | 20 % alcoholic soln.   | $\circ$                   | •                         | $\circ$                   | •                                    |                           |  |
| Camphor                   | _                                                                                  | technically pure       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Carbon disulphide         | $CS_2$                                                                             | 100 %                  | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Carbon tetrachloride      | CCI <sub>4</sub>                                                                   | technically pure       | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Caustic soda              | NaOH                                                                               | 40 % aq. soln.         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Chlorinated lime          | $Ca(CIO)_2$                                                                        | *, aq. soln.           | $\circ$                   | 0                         | 0                         | $\circ$                              | $\circ$                   |  |
| Chlorine                  | $Cl_2$                                                                             | technically pure       | $\circ$                   | 0                         | 0                         | $\circ$                              | $\circ$                   |  |
| Chlorine gas              | $Cl_2$                                                                             | < 5 %, gaseous         |                           | $\bullet$                 | •                         | $\bullet$                            | $\bullet$                 |  |
| Chlorine water            | _                                                                                  | < 5 %, aq. soln.       |                           | $\bullet$                 | •                         | $\bullet$                            | $\bullet$                 |  |
| Chloroacetic acid         | CICH <sub>2</sub> COOH                                                             | 10 %, technically pure | $\circ$                   | $\circ$                   | $\circ$                   | $\circ$                              | 0                         |  |
| Chlorobenzene             | $C_6H_5-CI$                                                                        | technically pure       | $\bullet \bullet \bullet$ | •                         | $\bullet$                 | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Chlorobrommethane         | CH <sub>2</sub> ClBr                                                               | technically pure       | $\bullet$                 | $\bullet$                 | •                         | $\bullet$                            | $\bullet$                 |  |
| Chloroform                | CHCl <sub>3</sub>                                                                  | technically pure       |                           | •                         | •                         | •                                    |                           |  |
| Chromic acid              | $H_2CrO_4$                                                                         | 10 % aq. soln.         | $\circ$                   | •                         | •                         | $\circ$                              | $\circ$                   |  |
| Chromic acid              | $H_2CrO_4$                                                                         | 1 % aq. soln.          |                           | $\bullet$                 | •                         | •                                    |                           |  |
| Chromic/sulphuric acid    | $H_2SO_4/CrO_3$                                                                    | *, aq. soln.           | $\circ$                   | 0                         | 0                         | $\circ$                              | $\circ$                   |  |
| Chromium salts            | _                                                                                  | *, aq. soln.           | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Coca-Cola                 | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Cocoa                     | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Coffee                    | _                                                                                  | commercial grade       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Copper salts              | _                                                                                  | 10 % aq. soln.         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet$                 | $\bullet \bullet \bullet$            | $\bullet \bullet \bullet$ |  |
| Cresol                    | $H_3C-C_6H_4-OH$                                                                   | technically pure       | 0                         | 0                         | 0                         | 0                                    | 0                         |  |

| Medium                  | Chemical formula                                                   | Concentration        | Grilon                    | Resistance on Grilamid Grilamid TR Grivory GV G |                           |                           |                           |
|-------------------------|--------------------------------------------------------------------|----------------------|---------------------------|-------------------------------------------------|---------------------------|---------------------------|---------------------------|
| Cyclohexane             | C <sub>6</sub> H <sub>12</sub>                                     | technically pure     | •••                       | •••                                             | •••                       | •••                       | •••                       |
| Cyclohexanol            | C <sub>6</sub> H <sub>11</sub> OH                                  | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | •                         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Cyclohexanone           | C <sub>6</sub> H <sub>10</sub> O                                   | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Decalin                 | C <sub>10</sub> H <sub>18</sub>                                    | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Dibutyl phthalate       | $C_6H_4 - (COOC_4H_9)_2$                                           | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | •••                       | $\bullet \bullet \bullet$ |
| Diesel                  | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | •••                       | $\bullet \bullet \bullet$ |
| Diesel oil              | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Diethyl ether           | $CH_3-CH_2-O-CH_2-CH_3$                                            | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Dimethyl formamide      | $HCON-(CH_3)_2$                                                    | technically pure     | $\bullet \bullet \bullet$ | $\bullet$                                       | $\circ$                   | $\bullet$                 | $\bullet \bullet \bullet$ |
| Dioctyl phthalate       | $C_6H_4-(COOC_8H_{17})_2$                                          | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Dioxane                 | $C_4H_8O_2$                                                        | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Edible fats and oils    | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Ethanol                 | CH <sub>3</sub> CH <sub>2</sub> OH                                 | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\circ$                   | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Ether                   | CH <sub>3</sub> CH <sub>2</sub> -O-CH <sub>2</sub> CH <sub>3</sub> | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Ethyl acetate           | CH <sub>3</sub> COOCH <sub>2</sub> CH <sub>3</sub>                 | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Ethylene chloride       | CICH <sub>2</sub> -CH <sub>2</sub> CI                              | technically pure     | $\bullet \bullet \bullet$ | $\bullet$                                       | •                         | $\bullet$                 | $\bullet \bullet \bullet$ |
| FAM B                   | _                                                                  | technically pure     | $\bullet \bullet \bullet$ | $\bullet$                                       | $\circ$                   | $\bullet$                 | $\bullet \bullet \bullet$ |
| Formaldehyde (Formalin) | HCHO                                                               | 40 % aq. soln.       | •                         | $\bullet$                                       | $\bullet$                 | •                         | $\bullet \bullet$         |
| Formamide               | HCONH <sub>2</sub>                                                 | technically pure     | $\bullet$                 | $\bullet$                                       | $\bullet$                 | ••                        | $\bullet \bullet$         |
| Formic acid             | HCOOH                                                              | 10 % aq. soln.       | •                         | •                                               | $\bullet$                 | •                         | $\bullet \bullet$         |
| Formic acid             | HCOOH                                                              | 40 % aq. soln.       | $\circ$                   | •                                               | •                         | •                         | •                         |
| Formic acid             | HCOOH                                                              | 85 % aq. soln.       | $\circ$                   | •                                               | $\circ$                   | 0                         | 0                         |
| Freon                   | partially halogenized                                              | commercial grade     | •                         | •                                               | •                         | •                         | •                         |
|                         | fully halogenized                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Freon 12                | $CF_2CI_2$                                                         | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Freon 22                | CHF <sub>2</sub> Cl                                                | technically pure     | •                         | •                                               | •                         | •                         | •                         |
| Fruit juices            | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Fuel C                  | free from lead                                                     | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Fuel oil                | _                                                                  | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Furfurol                | $C_4H_3O$ —CHO                                                     | technically pure     | $\bullet$                 | $\bullet$                                       | $\bullet$                 | $\bullet$                 | $\bullet$                 |
| Glycerine               | $C_3H_8O_3$                                                        | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | •••                       | $\bullet \bullet \bullet$ |
| Glycol                  | HO-CH <sub>2</sub> CH <sub>2</sub> -OH                             | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | •••                       | $\bullet \bullet \bullet$ |
| Heptane                 | C <sub>7</sub> H <sub>16</sub>                                     | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Hexane                  | C <sub>6</sub> H <sub>14</sub>                                     | technically pure     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Hydraulic fluid         | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Hydrochloric acid       | HCI                                                                | 10 % aq. soln.       | $\circ$                   | •                                               | $\bullet$                 | $\circ$                   | $\circ$                   |
| Hydrochloric acid       | HCI                                                                | 1 % aq. soln.        | •                         | $\bullet$                                       | $\bullet \bullet \bullet$ | •                         | •                         |
| Hydrogen fluoride       | HF                                                                 | 40 % aq. soln.       | $\circ$                   | $\circ$                                         | $\circ$                   | $\bigcirc$                | $\circ$                   |
| Hydrogen peroxide       | $H_2O_2$                                                           | 30 % aq. soln.       | $\circ$                   | $\circ$                                         | $\circ$                   | $\bigcirc$                | $\circ$                   |
| Hydrogen peroxide       | $H_2O_2$                                                           | 10 % aq. soln.       | •                         | $\bullet$                                       | $\bullet$                 | •                         | •                         |
| Hydrogen peroxide       | $H_2O_2$                                                           | 2 % aq. soln.        | •                         | $\bullet$                                       | $\bullet$                 | •                         | $\bullet$                 |
| Hydrogen sulphide       | $H_2S$                                                             | < 5 %, gaseous       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Ink                     | _                                                                  | commercial grade     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| lodine tincture         | $J_2$                                                              | *, alcoholic soln.   | $\circ$                   | $\circ$                                         | $\circ$                   | $\circ$                   | $\circ$                   |
| Iron salts              | _                                                                  | 20 % aq. soln. neut. | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                       | $\bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Iron salts              | _                                                                  | 20 % aq. soln. acid. | $\circ$                   | •                                               | •                         | •                         | •                         |
| Isooctane               | $(CH_3)_3C-CH_2CH(CH_3)_2$                                         | technically pure     |                           |                                                 |                           |                           |                           |

| Medium                           | Chemical formula                                                     | Concentration                      | Grilon | Grilamid | <b>Resistar</b><br>Grilamid TR |    | Grivory HTV |
|----------------------------------|----------------------------------------------------------------------|------------------------------------|--------|----------|--------------------------------|----|-------------|
| leannand glackel                 |                                                                      | tachnically pure                   | •      |          |                                | ,  | ,           |
| Isopropyl alcohol<br>Lactic acid | (CH <sub>3</sub> ) <sub>3</sub> -CHOH<br>CH <sub>3</sub> CH(OH)-COOH | technically pure<br>90 % aq. soln. | 0      |          | 0                              | 0  | 0           |
| Lactic acid                      | CH <sub>3</sub> CH(OH)-COOH                                          | 50 % aq. soln.                     |        |          |                                |    |             |
| Lactic acid                      | CH <sub>3</sub> CH(OH)-COOH                                          | 5 % aq. soln.                      |        |          |                                |    |             |
| Lanolin                          |                                                                      | commercial grade                   |        |          |                                |    |             |
| Lead salts                       | _                                                                    | technically pure                   |        |          |                                |    |             |
| Lemon juice                      | _                                                                    | *, commercial grade                |        |          |                                |    |             |
| Linseed oil                      | _                                                                    | commercial grade                   |        |          |                                |    |             |
| Liqueurs                         | _                                                                    | commercial grade                   |        |          |                                |    |             |
| Lubrications oils,               |                                                                      | commercial grade                   |        |          |                                |    |             |
| greases, soaps                   | _                                                                    | commercial grade                   |        |          |                                |    |             |
| Magnesium hydroxide              | $Mg(OH)_2$                                                           | 10 % aq. soln.                     |        |          |                                |    |             |
| Magnesium salts                  |                                                                      | 10 % aq. soln.                     |        |          |                                |    |             |
| Mercury                          | Hg                                                                   | technically pure                   |        |          |                                |    |             |
| Mercury salts                    |                                                                      | *, aq. soln., neutral              |        |          |                                |    |             |
| Methanol                         | CH <sub>3</sub> OH                                                   | technically pure                   |        |          | 0                              |    | •••         |
| Methylene chloride               | $CH_2CI_2$                                                           | technically pure                   |        |          |                                |    |             |
| Methylethyl ketone               | $CH_3-CO-CH_2-CH_3$                                                  | technically pure                   |        |          |                                |    |             |
| Milk                             |                                                                      | commercial grade                   |        |          |                                |    |             |
| Mineral oils                     | _                                                                    | commercial grade                   |        |          |                                |    |             |
| Motor fuels                      | _                                                                    | commercial grade                   |        |          |                                |    |             |
| Naphthalene                      | C <sub>10</sub> H <sub>8</sub>                                       | technically pure                   |        |          |                                |    |             |
| Nickel salts                     |                                                                      | *, aq. soln.                       |        |          |                                |    |             |
| Nitric acid                      | $HNO_3$                                                              | *, aq. soln.                       | 0      | 0        | •                              | 0  | 0           |
| Nitrobenzene                     | $C_6H_5NO_2$                                                         | technically pure                   |        | •        | ••                             |    | •           |
| Nitromethane                     | $CH_3NO_2$                                                           | technically pure                   |        |          |                                |    |             |
| Octane                           | C <sub>8</sub> H <sub>18</sub>                                       | technically pure                   |        |          |                                |    |             |
| Oil (No. 3 ASTM)                 | —<br>—                                                               | commercial grade                   |        |          |                                |    |             |
| Oil of lavendar                  | _                                                                    | commercial grade                   |        |          | •                              |    |             |
| Oil of pine needle               | _                                                                    | technically pure                   |        |          | •••                            |    |             |
| Oil of turpentine                | _                                                                    | technically pure                   |        |          |                                |    |             |
| Oleic acid                       | _                                                                    | technically pure                   |        |          |                                |    |             |
| Oleum                            | $H_2SO_4 + SO_3$                                                     | technically pure                   | 0      | 0        | 0                              | 0  | 0           |
| Olive oil                        | —                                                                    | commercial grade                   |        |          |                                |    |             |
| Oxalic acid                      | HOOC-COOH                                                            | 10 % aq. soln.                     | ••     | •••      | •••                            | •• | ••          |
| Ozone                            | $O_3$                                                                | *, gaseous                         | •      | •        | •                              | •  | •           |
| Ozone                            | $O_3$                                                                | < 1 ppm, gaseous                   |        |          |                                |    |             |
| Paraffin oil                     | <del>_</del>                                                         | technically pure                   |        |          |                                |    |             |
| Peanut oil                       | _                                                                    | commercial grade                   |        |          | •••                            |    |             |
| Peppermint oil                   | _                                                                    | technically pure                   | ••     | ••       | ••                             | •• | ••          |
| Perchlorethylene                 | $Cl_2C=CCl_2$                                                        | technically pure                   |        |          |                                |    |             |
| Petrol (unleaded, Esso)          | — · · · · · · · · · · · · · · · · · · ·                              | commercial grade                   |        |          |                                |    |             |
| Petroleum                        | _                                                                    | technically pure                   |        |          |                                |    |             |
| Petroleum ether                  | _                                                                    | technically pure                   |        |          |                                |    |             |
| Phenol                           | C <sub>6</sub> H <sub>5</sub> OH                                     | *, aq. soln.                       | •      | •        | •                              | •  | •           |
| Phenylethyl alcohol              | $H_3C - CH(C_6H_5) - OH$                                             | technically pure                   |        | •        | •                              | •  | ••          |
| Phosphoric acid                  | $H_3PO_4$                                                            | 50 % aq. soln.                     | •      | •        | •                              | •  | •           |
| ospone deld                      | 4                                                                    | 0 0 70 44. 00111.                  | _      | _        | •                              | •  | •           |

| Medium                   | Chemical formula                | Concentration      | Grilon                    | Grilamid                  | <b>Resistan</b><br>Grilamid TR |                           | Grivory HTV               |
|--------------------------|---------------------------------|--------------------|---------------------------|---------------------------|--------------------------------|---------------------------|---------------------------|
| Phosphoric acid          | H <sub>3</sub> PO <sub>4</sub>  | 10 % aq. soln.     | •                         | ••                        | ••                             | •                         | •                         |
| Plasticizers             |                                 |                    |                           |                           |                                |                           |                           |
| (phthalates, phosphates) | _                               | commercial grade   | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potash                   | K <sub>2</sub> CO <sub>3</sub>  | *, aq. soln.       | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potassium bromide        | KBr                             | 10 % aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potassium chlorate       | KCIO <sub>3</sub>               | 7 % aq. soln.      |                           | $\bullet$                 | $\bullet \bullet$              | •                         | •                         |
| Potassium hydroxide      | KOH                             | 50 % aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potassium iodide         | KJ                              | 10 % aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potassium nitrate        | $KNO_3$                         | 10 % aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Potassium permanganate   | $KMnO_4$                        | 1 % aq. soln.      | $\circ$                   | $\circ$                   | $\circ$                        | $\circ$                   | $\circ$                   |
| Potassium sulphate       | $K_2SO_4$                       | 10 % aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Propane                  | $C_3H_8$                        | technically pure   | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$      | $\bullet \bullet \bullet$ | •••                       |
| Propanol                 | $C_3H_7OH$                      | technically pure   | $\bullet \bullet \bullet$ | $\bullet \bullet$         | $\circ$                        | $\bullet$                 | $\bullet \bullet \bullet$ |
| Pyridine                 | $C_5H_5N$                       | technically pure   | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet$              | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Pyrocatechol             | $HO-C_6H_4-OH$                  | 6 % aq. soln.      | •                         | ••                        | 0                              | •                         | •                         |
| Resorcinol               | $HO-C_6H_4-OH$                  | technically pure   | 0                         | 0                         | 0                              | 0                         | $\circ$                   |
| Resorcinol               | $HO-C_6H_4-OH$                  | *, alcoholic soln. | 0                         | 0                         | 0                              | 0                         | 0                         |
| Rum                      | _                               | commercial grade   | •••                       | •••                       | ••                             | •••                       | •••                       |
| Salicylic acid           | $HO-C_6H_4-COOH$                | technically pure   | •••                       | •••                       | •••                            | •••                       | •••                       |
| Silicone oils            | <u> </u>                        | technically pure   |                           |                           | •••                            |                           |                           |
| Silver salts             | _                               | *, aq. soln.       |                           |                           |                                |                           |                           |
| Soap solution            | _                               | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium bicarbonate       | NaHCO <sub>3</sub>              | *, aq. soln.       |                           |                           |                                |                           |                           |
| Sodium bisulphite        | NaHSO <sub>3</sub>              | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium bromide           | NaBr                            | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium carbonate         | Na <sub>2</sub> CO <sub>3</sub> | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium chloride          | NaCl                            | *, aq. soln.       |                           |                           |                                |                           |                           |
| Sodium chlorite          | NaClO <sub>2</sub>              | 5 % aq. soln.      |                           |                           |                                |                           |                           |
| Sodium hydroxide         | NaOH                            | 40 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium hypochlorite      | NaOCI                           | 5 % aq. soln.      |                           |                           |                                |                           |                           |
| Sodium nitrate           | NaNO <sub>3</sub>               | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium nitrite           | NaNO <sub>2</sub>               | 5 % aq. soln.      |                           |                           |                                |                           |                           |
| Sodium perborate         | - 1 Nul NO2                     | 5 % aq. soln.      |                           |                           |                                |                           |                           |
| Sodium phosphate         | Na <sub>3</sub> PO <sub>4</sub> | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium sulphate          | $Na_2SO_4$                      | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium sulphide          | Na <sub>2</sub> S               | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Sodium sulphite          | Na <sub>2</sub> SO <sub>3</sub> | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| •                        | - 0                             | · ·                |                           |                           |                                |                           |                           |
| Sodium thiosulphite      | $Na_2S_2O_3$                    | 10 % aq. soln.     |                           |                           |                                |                           |                           |
| Soya oil                 | _                               | commercial grade   |                           |                           |                                | •••                       |                           |
| Starch                   |                                 | *, aq. soln.       |                           |                           |                                | •••                       |                           |
| Styrene                  | $C_6H_5$ - $CH$ = $CH_2$        | technically pure   |                           |                           |                                | •••                       |                           |
| Sugar                    | $C_6H_{12}O_6$                  | *, aq. soln.       |                           |                           |                                |                           |                           |
| Sulphur                  | S                               | technically pure   |                           |                           |                                |                           |                           |
| Sulphur dioxide          | SO <sub>2</sub>                 | < 5 %              | •                         | ••                        | ••                             | •                         |                           |
| Sulphuric acid           | $H_2SO_4$                       | technically pure   | 0                         | •                         | •                              | 0                         | 0                         |
| Sulphuric acid           | H <sub>2</sub> SO <sub>4</sub>  | 36 % aq. soln.     | •                         |                           |                                | •                         | •                         |
| Sulphuric acid           | $H_2SO_4$                       | 10 % aq. soln.     |                           |                           |                                | •                         | •                         |

| Medium           | Chemical formula        | Concentration    | 0.1                       |                           | Resistance Grilamid TR Grivory GV Grivory |                           |                           |
|------------------|-------------------------|------------------|---------------------------|---------------------------|-------------------------------------------|---------------------------|---------------------------|
|                  |                         |                  | Grilon                    | Grilamid                  | Grilamid IR                               | Grivory GV                | Grivory HTV               |
| Sulphuric acid   | $H_2SO_4$               | 2 % aq. soln.    | •                         | ••                        | •••                                       | •                         | •                         |
| Table salt       | NaCl                    | *, aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | •••                       | $\bullet \bullet \bullet$ |
| Tallow           | _                       | commercial grade | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Tar              | _                       | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Tartaric acid    | HOOC-CH(OH)-CH(OH)-COOH | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Tea              | _                       | commercial grade | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Tetrahydrofuran  | $C_4H_8O$               | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet$                         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Tetralin         | $C_{10}H_{12}$          | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Thionyl chloride | SOCI <sub>2</sub>       | technically pure | $\circ$                   | $\circ$                   | $\circ$                                   | 0                         | 0                         |
| Toluene          | $C_6H_5-CH_3$           | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Trichlorethylene | Cl <sub>2</sub> C=CHCl  | technically pure | $\bullet \bullet$         | $\bullet \bullet$         | $\bullet \bullet$                         | $\bullet$                 | $\bullet$                 |
| Urea             | $H_2N-CO-NH_2$          | 20 % aq. soln.   | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet$                         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Vaseline         | _                       | commercial grade | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Vinegar          | CH₃COOH                 | commercial grade | $\bullet \bullet$         | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet$                 | $\bullet$                 |
| Water            | H <sub>2</sub> O        | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Water glass      | _                       | *, aq. soln.     | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Wax              | _                       | commercial grade | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |
| Wine             | _                       | commercial grade | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | •••                       | $\bullet \bullet \bullet$ |
| Xylene           | $H_3C-C_6H_4-CH_3$      | technically pure | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$                 | •••                       | $\bullet \bullet \bullet$ |
| Zinc chloride    | $ZnCl_2$                | 10 % aq. soln.   | ••                        | •••                       | $\bullet \bullet \bullet$                 | $\bullet \bullet \bullet$ | $\bullet \bullet \bullet$ |

The recommendations and data given are based on our experience to date. No liability can be assumed in connection with their usage and processing.

Domat/Ems, June 2001

# **EMS-GRIVORY** worldwide

www.emsgrivory.com

#### **Switzerland**

EMS-GRIVORY
Reichenauerstrasse
CH-7013 Domat/Ems
Tel. +41 81 632 78 88
Fax +41 81 632 74 01
a unit of EMS-CHEMIE AG
E-Mail: welcome@emsgrivory.com

## Germany

EMS-CHEMIE (Deutschland) GmbH Business Unit EMS-GRIVORY Warthweg 14 D-64823 Gross-Umstadt Tel. +49 6078 78 30 Fax +49 6078 783 416 E-Mail: welcome@de.emsgrivory.com

#### France

EMS-CHEMIE (France) S.A.
Division EMS-GRIVORY
73-77, rue de Sèvres
Boîte postale 52
F-92105 Boulogne-Billancourt
Tel. +33 1 41 10 06 10
Fax +33 1 48 25 56 07
E-Mail: welcome@fr.emsgrivory.com

#### **Great Britain**

EMS-CHEMIE (UK) Ltd.
Business Unit EMS-GRIVORY
Drummond Road
Astonfields Industrial Estate
GB-Stafford ST16 3HJ
Tel. +44 1785 607 580
Fax +44 1785 607 570
E-Mail: welcome@uk.emsgrivory.com

#### **United States**

EMS-CHEMIE (North America) Inc. Business Unit EMS-GRIVORY 2060 Corporate Way P.O. Box 1717 Sumter, SC 29151, USA Tel. +1 803 481 91 73 Fax +1 803 481 38 20 E-Mail: welcome@us.emsgrivory.com

# Taiwan

EMS-CHEMIE (Asia) Ltd.
Business Unit EMS-GRIVORY
36, Kwang Fu South Road
Hsin Chu Industrial Park
Fu Kou Hsiang, Hsin Chu Hsien
Taiwan, R.O.C.
Tel. +886 35 985 335
Fax +886 35 985 345
E-Mail: welcome@tw.emsgrivory.com

#### Japan

EC-SHOWA DENKO K.K.
Business Unit EMS-GRIVORY
Yutaka Bldg.
4-9-3 Taito
Taito-ku
110-0016, Tokyo, Japan
Tel. +81 3 3832 1501
Fax +81 3 3832 1503
E-Mail: welcome@jp.emsgrivory.com

